24 research outputs found

    Heartbeat Anomaly Detection using Adversarial Oversampling

    Full text link
    Cardiovascular diseases are one of the most common causes of death in the world. Prevention, knowledge of previous cases in the family, and early detection is the best strategy to reduce this fact. Different machine learning approaches to automatic diagnostic are being proposed to this task. As in most health problems, the imbalance between examples and classes is predominant in this problem and affects the performance of the automated solution. In this paper, we address the classification of heartbeats images in different cardiovascular diseases. We propose a two-dimensional Convolutional Neural Network for classification after using a InfoGAN architecture for generating synthetic images to unbalanced classes. We call this proposal Adversarial Oversampling and compare it with the classical oversampling methods as SMOTE, ADASYN, and RandomOversampling. The results show that the proposed approach improves the classifier performance for the minority classes without harming the performance in the balanced classes

    Additive Margin SincNet for Speaker Recognition

    Full text link
    Speaker Recognition is a challenging task with essential applications such as authentication, automation, and security. The SincNet is a new deep learning based model which has produced promising results to tackle the mentioned task. To train deep learning systems, the loss function is essential to the network performance. The Softmax loss function is a widely used function in deep learning methods, but it is not the best choice for all kind of problems. For distance-based problems, one new Softmax based loss function called Additive Margin Softmax (AM-Softmax) is proving to be a better choice than the traditional Softmax. The AM-Softmax introduces a margin of separation between the classes that forces the samples from the same class to be closer to each other and also maximizes the distance between classes. In this paper, we propose a new approach for speaker recognition systems called AM-SincNet, which is based on the SincNet but uses an improved AM-Softmax layer. The proposed method is evaluated in the TIMIT dataset and obtained an improvement of approximately 40% in the Frame Error Rate compared to SincNet
    corecore